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1 Monte Carlo Simulation
To better understand how the PLQC forecast works, we consider a Monte Carlo simulation experiment
that allows us to study both the absolute forecast performance of the proposed method as well as its
performance relative to some alternative methods. The main innovation is that we allow for the existence
of both fully and partially weak predictors.

The Monte Carlo simulation is based on the following location-scale model:

rt+1 = β0 +
∑
i

βixi,t + (γ0 +
∑
i

γixi,t)ηt+1 (1)

i = 1, 2, . . . , 6; t = 1, 2, . . . , 1000

where β0 = 1, ∀t, ηt+1 ∼ N(0, σ2
η), and ση = 0.75. The total number of observations is T = 1000,

from which the first 999 observations are used to estimate the coefficients and the last one is used to
evaluate the one-step ahead forecasts. The number of potential predictors is 6. To illustrate the idea of
fully weak predictors, we set βi = γi = 0 for i = 3, 4, . . . , 6 and all t. Hence, predictors x3, x4, . . . , x6

are fully weak because they never enter into the data generating process and therefore cannot predict any
quantile of the distribution of rt+1 . In order to generate partially weak predictors, we set β1 = −1.5
and γ1 = 5, if ηt+1 ≤ φ−1(0.5), the 50th percentile of a normal distribution with mean 0 and standard
deviation ση; otherwise both parameters are set to zero. Similarly, β2 = 1.5 and γ2 = 5, if ηt+1 >
φ−1(0.5). Hence, predictors x1 and x2 are partially weak since they affect some, but not all, quantiles of
rt+1. Finally, in order to create some outliers in the observations, we set γ0 = ση if ηt+1 < 1.96, otherwise
γ0 = 5ση.

Notice that the weak predictability problem generated by this Monte Carlo simulation is quite severe
since the predictors are either partially or fully weak, but never strong. In doing so, we want to simulate
a situation that mimics the empirical problem reported in the next section where predictors of monthly
equity premium became extremely weak after 1990s.
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Table 1: Monte Carlo simulations
ρ = 0 ρ = 0.1 ρ = 0.25 ρ = 0.5 ρ = 0.95

Model R2(%) p-value R2(%) p-value R2(%) p-value R2(%) p-value R2(%) p-value
x1 2.513 0.000 1.877 0.000 1.133 0.000 0.353 0.000 -0.120 0.552
x2 2.945 0.000 2.276 0.000 1.464 0.000 0.566 0.000 -0.115 0.477
x3 -0.104 0.554 -0.107 0.583 -0.113 0.647 -0.126 0.741 -0.130 0.681
x4 -0.146 0.887 -0.138 0.845 -0.126 0.770 -0.116 0.667 -0.112 0.533
x5 -0.077 0.282 -0.077 0.281 -0.082 0.317 -0.092 0.395 -0.114 0.534
x6 -0.145 0.880 -0.151 0.902 -0.153 0.908 -0.162 0.930 -0.136 0.735
CSR k=1 1.693 0.000 1.307 0.000 0.837 0.000 0.307 0.000 -0.111 0.592
CSR k=2 3.043 0.000 2.427 0.000 1.698 0.000 0.866 0.000 -0.050 0.040
CSR k=3 4.052 0.000 3.310 0.000 2.418 0.000 1.342 0.000 -0.043 0.002
FOLS 5.272 0.000 4.418 0.000 3.333 0.000 1.911 0.000 -0.242 0.000
FQR 5.371 0.000 4.529 0.000 3.444 0.000 2.032 0.000 -0.069 0.000
PLQC 5.532 0.000 4.709 0.000 3.622 0.000 2.195 0.000 0.053 0.000

This table reports R2
OS statistics (in%) and its significance through the p-value of the Clark and West (2007) test associated with each forecasting model over

5 different Monte-Carlo simulation experiments. ρij = (0, 0.1, 0.25, 0.50, 0.95) represent the Spearman correlation coefficient of 6 predictors (x1, ..., x6),
from which the first 2 are partially weak and the others are fully weak.

We generate a 6×1 vector of predictorsXt = (x1t, ..., x6t)
′ where each predictor xit is distributed uni-

formly over the interval (0, 1) with Spearman correlation coefficient given by ρij = (0, 0.1, 0.25, 0.50, 0.95).
Recall that the sign of the Spearman correlation indicates the direction of association between xit and xjt
for i 6= j. If xit tends to increase when xjt increases, then the Spearman correlation coefficient is positive.
A Spearman correlation of zero indicates that there is no tendency for xit to either increase or decrease
when xjt increases. The Spearman correlation increases in magnitude as xit and xjt get closer to perfect
monotone functions of each other. When xit and xjt are perfectly monotonically related, the Spearman
correlation coefficient is 1.

Forecasts are computed using the single-predictor equation1, the complete subset regressions (CSR)
with k = 1, 2 and 3, PLQC, FQR and FOLS methods. The PLQC and FQR forecasts are obtained
by combining 9 different quantile forecasts at levels τ = (0.1, 0.2, . . . , 0.9) based on the time-invariant
weighting scheme.2 We report evaluation results, the out-of-sample R2 and the p-value of the Clark-West
test based on 25,000 out-of-sample forecasts (simulations).3

Table 1 displays the simulation results. When the Spearman correlation among x-variables is not
very high, especially ρ ≤ 0.5, the separation between partially and fully weak predictors is clear. Con-
sequently, forecasts based on the single-predictor models using the partially weak predictors x1 and x2

have statistically significant positive R2 values. As expected, forecasts based on fully weak predictors,
x3, x4, . . . , x6 have a negative but insignificantR2 value. None of the single-predictor forecasts outperfor-
m the combination methods represented by CSR, PLQC, FQR and FOLS. Our simulations also show that
FQR outperforms the non-robust FOLS forecast. This confirms that robust estimation of the prediction
equation can improve forecast accuracy.

Finally, if the Spearman correlation coefficient is very high, say ρ = 0.95, then it will be much more
difficult to distinguish between partial and fully weak predictors. Consequently, our simulations show

1As shown in the paper, the single-predictor equation is represented by rt+1 = αi + βixi,t + εi,t+1.
2Results based on other weighting schemes are similar. In our empirical analysis, we did not include lower quantile levels,

0.1 and 0.2, or higher quantile levels, 0.8 and 0.9, as we did here, because of our concern about relative small sample size in
the equity premium data.

3This is similar to Elliot, Gargano and Timmermann (2013, page 32).
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Table 2: Monte Carlo simulations
ρ = 0 ρ = 0.1 ρ = 0.25 ρ = 0.5 ρ = 0.95

Model R2(%) p-value R2(%) p-value R2(%) p-value R2(%) p-value R2(%) p-value
x1 -0.108 0.651 -0.108 0.651 -0.108 0.651 -0.108 0.651 -0.108 0.651
x2 -0.098 0.550 -0.098 0.548 -0.109 0.680 -0.120 0.779 -0.121 0.773
x3 -0.067 0.250 -0.065 0.230 -0.094 0.513 -0.122 0.791 -0.134 0.869
x4 -0.059 0.193 -0.055 0.162 -0.051 0.133 -0.072 0.290 -0.121 0.780
x5 -0.076 0.298 -0.074 0.278 -0.091 0.441 -0.111 0.649 -0.128 0.808
x6 -0.095 0.509 -0.097 0.528 -0.111 0.657 -0.130 0.822 -0.133 0.853
CSR k=1 -0.006 0.254 -0.004 0.230 -0.021 0.504 -0.052 0.772 -0.117 0.805
CSR k=2 -0.043 0.261 -0.041 0.243 -0.064 0.420 -0.094 0.603 -0.123 0.634
CSR k=3 -0.113 0.268 -0.111 0.255 -0.132 0.364 -0.152 0.465 -0.164 0.474
FOLS -0.429 0.484 -0.426 0.472 -0.442 0.556 -0.460 0.635 -0.415 0.429
FQR -0.140 0.065 -0.141 0.068 -0.149 0.090 -0.157 0.120 -0.122 0.038
PLQC -0.045 0.044 -0.049 0.054 -0.048 0.062 -0.039 0.057 -0.028 0.058

This table reports R2
OS statistics (in%) and its significance through the p-value of the Clark and West (2007) test associated with each forecasting model over

5 different Monte-Carlo simulation experiments. ρij = (0, 0.1, 0.25, 0.50, 0.95) represent the Spearman correlation coefficient of 6 fully weak predictors
(x1, ..., x6).

that all forecasting methods deteriorate substantially. The main message here is that weak predictors can
be very harmful to a forecasting model but this problem can be minimized if an adequate forecasting
method is employed. The proposed PLQC forecast performs very well because it is robust to estimation
errors, avoids fully weak predictors, and accounts for the relative contribution of partially weak predictors
to forecasting. Our Monte Carlo simulations suggest that this is the best approach to deal with this form
of weak predictability.

In addition to the above design, we also consider two extreme cases in which all predictors are fully
weak or partially weak. First, when all predictors are fully weak, the data generating process is simplified
to:

rt+1 = β0 + γ0ηt+1 t = 1, 2, . . . , 1000 (2)

where β0 = 1, ∀t, ηt+1 ∼ N(0, σ2
η), and ση = 0.75. As before, we set γ0 = ση if ηt+1 < 1.96,

otherwise γ0 = 5ση.
The results are shown in Table 2. All conditional models have negative R2(%) across 5 different

correlation parameters ρ. Overall, it is hard to find a model that can outperform the historical average
model when the real data generating process does not have any strong or partially weak predictor.

The other extreme case considers a situation when all predictors are partially weak. Specifically, based
on the DGP (1), we set β1 = −1.5 and γ1 = 5, if ηt+1 ≤ φ−1(0.3). Similarly, β2 = −1.5 and γ2 = 5, if
ηt+1 ≤ φ−1(0.4); β3 = −1.5 and γ3 = 5, if ηt+1 ≤ φ−1(0.5); β4 = −1.5 and γ4 = 5, if ηt+1 > φ−1(0.5);
β5 = 1.5 and γ5 = 5, if ηt+1 ≥ φ−1(0.6); β6 = 1.5 and γ6 = 5, if ηt+1 ≥ φ−1(0.7). Hence, predictors
x1, x2, . . . , x6 are all partially weak since they affect some, but not all, quantiles of rt+1. All the rest
parameters are the same as before.

Table 3 displays the results. When the Spearman correlation coefficient is relative small, especially
lower than or equal to 0.25, the PLQC does best among all. This result suggests that if the correlation
coefficient is high, and predictors are perfectly monotonically related, then LASSO does not choose the
right predictor at each quantile, leading to a misspecified prediction equation. In general, none of the
forecasting models perform quite well for the case with highly correlated partially weak predictors.
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Table 3: Monte Carlo simulations
ρ = 0 ρ = 0.1 ρ = 0.25 ρ = 0.5 ρ = 0.95

Model R2(%) p-value R2(%) p-value R2(%) p-value R2(%) p-value R2(%) p-value
x1 0.182 0.000 0.049 0.000 -0.035 0.002 -0.086 0.153 -0.105 0.332
x2 0.252 0.000 0.064 0.000 -0.067 0.003 -0.155 0.532 -0.194 0.861
x3 0.423 0.000 0.174 0.000 0.003 0.000 -0.113 0.190 -0.133 0.427
x4 0.684 0.000 0.417 0.000 0.220 0.000 0.057 0.000 -0.003 0.003
x5 0.521 0.000 0.331 0.000 0.187 0.000 0.060 0.000 -0.009 0.005
x6 0.290 0.000 0.145 0.000 0.032 0.000 -0.062 0.065 -0.101 0.288
CSR k=1 0.849 0.000 0.500 0.000 0.253 0.000 0.056 0.000 -0.020 0.089
CSR k=2 1.514 0.000 0.913 0.000 0.495 0.000 0.178 0.000 0.057 0.000
CSR k=3 1.996 0.000 1.219 0.000 0.679 0.000 0.264 0.000 0.101 0.000
FOLS 2.342 0.000 1.328 0.000 0.572 0.000 -0.011 0.000 -0.195 0.000
FQR 2.344 0.000 1.373 0.000 0.625 0.000 0.043 0.000 -0.156 0.000
PLQC 2.525 0.000 1.496 0.000 0.678 0.000 0.132 0.000 -0.012 0.000

This table reports R2
OS statistics (in%) and its significance through the p-value of the Clark and West (2007) test associated with each forecasting model

over 5 different Monte-Carlo simulation experiments. ρij = (0, 0.1, 0.25, 0.50, 0.95) represent the Spearman correlation coefficient of 6 partially weak
predictors (x1, ..., x6).

2 Measure of consistence in forecasting performance
In this section, we focus on the evaluation of PLQC forecasts’ performance consistence compared to other
conditional forecasts, as a supplement to the analysis of cumulative squared prediction errors (Figure
2 in the paper). First, we calculate the frequency of months (within the whole out-of-sample period
1967.1-2013.12), in which the squared prediction errors of the benchmark model are larger than those
of a conditional forecast. Table 4 column 2 displays the percentage of months that a conditional model
outperforms the HA in terms of squared prediction errors. Overall, PLQC forecasts have higher frequency
than most single-predictor models, CSR, FOLS and FQR models.

Based on this frequency measure, we form a very basic impression about the consistence of the mod-
el’s performance. However, this information is quite limited about the size of the squared prediction
errors’ gap between the benchmark and the conditional forecast. A positive gap indicates that the con-
ditional forecast does better producing smaller squared prediction errors than the benchmark, while the
opposite is true for negative gaps. To have a more comprehensive understanding regarding the consis-
tence of the model’s performance, we draw histograms of the squared prediction errors’ gap. As shown in
Figures 1 and 2, most of the single predictor models, the CSR models4 and the FOLS models are skewed
to the left, with more and/or larger negative gaps than positive ones. The distributions of FQR3 and FQR4
are roughly symmetric. In contrast, the distributions of FQR1, FQR2 and all PLQC forecasts are skewed
to the right, especially for those of PLQC1 and PLQC2. Not only the PLQC forecasts have more positive
gaps relative to negative ones, but also the upper tails of their distributions extend much further than those
of the single-predictor and CSR forecasts. All of these help explain the better cumulative performance of
the PLQC forecasts compared to other forecasting models as seen in Figures 1 and 2 of the paper.

4To save space, we only include CSR k=1 and CSR k=2 in this figure. But CSR k=3 is similar to CSR k=2.
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Table 4: Frequency of positive squared prediction errors’ gaps
Model Freq.

Single Predictor Model Forecasts
DP 46.10
DY 45.21
EP 43.26
DE 48.40
SVAR 51.06
BM 41.13
NTIS 53.55
TBL 49.11
LTY 50.18
LTR 49.47
TMS 52.48
DFY 49.82
DFR 52.30
INFL 54.08
E10P 42.73

Complete Subset Regression Forecasts
CSR k=1 47.52
CSR k=2 46.99
CSR k=3 45.57
Forecasts based on LASSO-Quantile Selection
FOLS1 48.94
FOLS2 48.23
FQR1 54.61
FQR2 53.55
FQR3 50.35
FQR4 49.29
PLQC1 54.61
PLQC2 54.43
PLQC3 52.48
PLQC4 51.60

Column 2 illustrates the frequency of months (in%) in which the squared prediction errors of the benchmark are larger than those of a conditional forecast
within the period (1967.1-2013.12).
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Figure 1: Frequency of the squared prediction errors’ gap between the benchmark model and the single-predictor
models 1967.1-2013.12

The squared prediction errors’ gap is calculated as the squared prediction error of the HA forecast minus that of the PLQC or FQR forecast. The figure shows
the frequency of the errors’ gap for each model.
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Figure 2: Frequency of the squared prediction errors’ gap between the benchmark model and the CSR, FOLS, FQR
and PLQC models 1967.1-2013.12

The squared prediction errors’ gap is calculated as the squared prediction error of the HA forecast minus that of the CSR, FOLS, FQR and PLQC forecasts.
The figure shows the frequency of the errors’ gap for each model.
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3 Data description
In this section, we provide a complete description about our database. The data come from Amit Goyal’s
webpage (http://www.hec.unil.ch/agoyal/), which includes monthly observations of the returns on the
S&P 500 index, the risk-free rate and of the following 15 predictors from December 1926 to December
2013:
· Dividend-price ratio (log), DP: Difference between the log of dividends paid on the S&P 500 index

and the log of stock prices (S&P 500 index), where dividends are measured using one-year moving sum.
· Dividend yield (log), DY: Difference between the log of dividends and the log of lagged stock prices.
· Earnings-price ratio (log), EP: Difference between the log of earnings on the S&P 500 index and

the log of stock prices, where earnings are measured using one-year moving sum.
· Dividend-payout ratio (log), DE: Difference between the log of dividends and the log of earnings.
· Stock variance, SVAR: Sum of squared daily returns on the S&P 500 index.
· Book-to-market ratio, BM: Ratio of book value to market value for the Dow Jones Industrial Average.
· Net equity expansion, NTIS: Ratio of the twelve-month moving sums of net issues by NYSE-listed

stocks to total end-of-year market capitalization of NYSE stocks.
· Treasury bill rate, TBL: Interest rate on a three-month Treasury bill (secondary market).
· Long-term yield, LTY: Long-term government bond yield.
· Long-term return, LTR: Return on long-term government bonds.
· Term spread, TMS: Difference between the long-term yield and the Treasury bill rate.
· Default yield spread, DFY: Difference between BAA- and AAA-rated corporate bond yields.
· Default return spread, DFR: Difference between long-term corporate bond and long-term govern-

ment bond returns.
· Inflation, INFL: Calculated from the CPI (all urban consumers). Since inflation at time t is only

released at time t + 1, we assumed adaptive expectations about future inflation. In other words, we
predicted equity premium at time t + 1 by using inflation rate from t − 1 (released at time t) as the best
prediction of the inflation rate at time t. Our results point out that adaptive expectations of inflation can
play an important role in equity premium prediction.
· Moving average of earning-price ratio, E10P: ten-year moving average of earnings-price ratio.

4 Economic evaluation: utility gain
In the equity premium predictability literature, the percentage values of R2

OS are typically small, but this
does not mean that their economic values are insignificant. Indeed, as argued by Campbell and Thompson
(2008), even a very small positive R2

OS , such as 0.5% for monthly data or 1% for quarterly data, can still
signal an economically meaningful degree of equity premium predictability in terms of increased annual
portfolio returns for a mean-variance investor. To estimate the economic values of forecasts, we calcu-
late the certainty equivalent return (or utility gain), which can be interpreted as the management fee an
investor would be willing to pay to have access to the additional information provided by the conditional
forecast models relative to the information available in the historical average benchmark model.

In detail, assume a risk-averse investor who has a mean-variance utility function and considers how to
optimally allocate the total wealth between a risky equity and a risk-free asset at time t based on current
risk-free rate rft+1 and one-period ahead forecast of the equity premium, r̂t,t+1. Thus, the one-period
ahead forecast of return on the risky equity is R̂t,t+1 = r̂t,t+1 + rft+1. The weight allocated to the risky
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equity is calculated as ωt = 1
γ

R̂t,t+1

σ̂2
t+1

, where γ is the risk-aversion parameter5 and σ̂2
t+1 is the estimated

variance of equity assets 6. The more risk averse an investor is, the lower the weight on the risky asset.
Also, the more volatile the equity return, the lower the weight on risky asset. In addition, we impose that
ωt ∈ (0, 1.5) to ensure no short sales or over leverage (Rapach and Zhou (2013)).

The realized portfolio return at time t + 1 is Rp
t+1 = ωtRt+1 + (1 − ωt)rft+1. Over T ∗ out-of-sample

periods, an investor’s utility (or certainty equivalent return) from this portfolio allocation can be calculated
as:

U = µ̂p −
1

2
γσ̂2

p (3)

where µ̂p = 1
T ∗

∑
tR

p
t and σ̂2

p = V ar(Rp) = 1
T ∗

∑
t(R

p
t − µ̂p)

2. The utility gain is the difference
between utility derived based on a conditional forecast model and that from a historical average model. To
facilitate the interpretation, we multiply the utility gains by 1200, which gives us the annual management
fee that an investor would be willing to pay in order to get access to the additional information from that
conditional forecast model. This same approach has also been used by Campbell and Thompson (2008),
Rapach et al. (2010) and others.

4.1 Robustness analysis: a common factor and “kitchen sink” model
In this section, we did the robustness analysis on a common-factor model for the mean and quantile
functions and the “kitchen-sink” model.

In the absence of notion aboutE (rt+1|Xt) or the underlying DGP, Capistrán and Timmermann (2009)
propose a common factor model that is sufficiently rich to cover a variety of empirically relevant scenar-
ios. Accordingly, let rt+1 and the individual forecast, f it+1,t, be driven by the following common factor
model:

rt+1 = µr + βrHHt+1,t + ηt+1, ηt+1 ∼ N
(
0, σ2

η

)
(4)

f it+1,t = µi + βiHHt+1,t + εi,t+1, εi,t+1 ∼ N
(
0, σ2

i

)
where Ht+1,t is a common factor predictable at time t. E (rt+1|Xt) = µr + βrHHt+1,t. Assuming

Ht+1,t = Ht, we apply model (4) to estimate the conditional mean E (rt+1|Xt) directly (Neely et al.
(2014)). More specifically, we assume that there is only one factor estimated by principal component and
labeled PC. We also estimate the quantile function Qτ (rt+1|Xt) = µτ +βτHt using the standard quantile
regression estimator (Zhao (2013)) and apply the same weighting schemes as described in section 2 of the
paper to combine Qτ (rt+1|Xt). We label these new quantile forecast combinations as QPC1 and QPC2

with fixed-weighting schemes and as QPC3 and QPC4 with time-variant weighting schemes.
Following Goyal and Welch (2008) and Rapach et al. (2010), we additionally consider a “kitchen

sink” (KS) model that includes all 15 economic variables into a multiple predictive regression model.
Our results are displayed in Figure 3. In addition to a higher variance, the PC forecast is even more

biased than HA. Thus, it is easily outperformed by the benchmark. Similarly, the QPC forecasts are also
outperformed by the HA. As for the KS model, although it does reduce bias substantially, it does so at the
expense of a large increase in forecast variance.

In sum, the empirical results show that: (i) the low bias of the “kitchen-sink” model is obtained at the
expense of a very high forecast variance in a way that does not reduce MSPE compared to the historical

5In order to ensure a moderate risk averse preference, we follow the literature by setting γ equal to 3.
6Following Campbell and Thompson (2008), we use a 10-year moving window to estimate the variance of equity returns.
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Figure 3: Scatterplot of forecast variance and squared forecast bias relative to historical average, 1967.1-2013.12

The y-axis and x-axis represent relative forecast variance and squared forecast bias of PLQC, QPC, PC and KS models, calculated as the difference between
the forecast variance (squared bias) of the conditional model and the forecast variance (squared bias) of the HA. Each point on the dotted line represents a
forecast with the same MSPE as the HA; points to the right are forecasts outperformed by the HA, and points to the left represent forecasts that outperform the
HA.
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average forecast; (ii) The quantile forecast combination based on a common factor quantile model cannot
outperform the HA benchmark, supporting LASSO as an efficient model selection tool for forecasting
equity premium.

5 Proof for Proposition 1
In this section, we provide detailed proof corresponding to proposition 1 in the paper. Recall that the data
generating process (DGP) is defined as

rt+1 = X ′t+1,tα +
(
X ′t+1,tγ

)
ηt+1, (5)

ηt+1|It ∼ i.i.d. Fη (0, 1) ,

Proof. The proof is similar to the one shown by Granger (1969), Christoffersen and Diebold (1997) and
Patton and Timmermann (2007) in the first part of their Proposition 2. Thus, by homogeneity of the loss
function and DGP (5) we have that the optimal forecast is given by7

r̂t+1,t = argmin
r̂

∫
L(r − r̂)dFt+1,t(r)

argmin
r̂

∫ [
g

(
1

X ′t+1,tγ

)]−1

L

(
1

X ′t+1,tγ
(r − r̂)

)
dFt+1,t(r)

= argmin
r̂

∫
L

(
1(

X ′t+1,tγ
) (r − r̂)

)
dFt+1,t(r)

= argmin
r̂

∫
L

(
1(

X ′t+1,tγ
) (X ′tα + (X ′tγ) ηt+1 − r̂)

)
dFt+1,t(r).

Let us represent a forecast by X ′tα + (X ′tγ) δ̂t+1,t. In this way, it follows that:

r̂t+1,t = X ′tα + (X ′tγ) · argmin
δ̂

∫
L

(
1

(X ′tγ)
(X ′tα

+ (X ′tγ) ηt+1 −X ′tα− (X ′tγ) δ̂))dFη(η)

= X ′tα + (X ′tγ) · argmin
δ̂

∫
L
(
ηt+1 − δ̂

)
dFη(η)

= X ′tα + κτ

= E (rt+1|Xt) + κτ ,

where κτ = (X ′tγ) δ∗ and δ∗ = argminδ̂
∫
L
(
ηt+1 − δ̂

)
dFη(η).

Given this optimality result, it is now important to show the relationship between δ∗ and the quantiles
of ηt+1. Let Ft+1,t be the conditional distribution of rt+1. Thus,

7We omit some time subscripts in the proof to save space.
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Ft+1,t (r̂t+1) = Pr (rt+1 < r̂t+1|Xt) (6)

= Pr

(
rt+1 = X ′tα + (X ′tγ) ηt+1 <
< X ′tα + (X ′tγ) δ∗|Xt

)
= Pr (ηt+1 < δ∗|Xt) = Fη (δ∗) = τ ∈ (0, 1)

So δ∗ = F−1
η (τ), which corresponds to the τth quantile of ηt+1.

As a corollary of the above result, we have that the optimal forecast should be equal to

r̂t+1 = Qτ (rt+1|Xt) , for some τ ∈ (0; 1) (7)
= E (rt+1|Xt) + κτ

If L is the MSPE loss function then δ∗ = 0 and the optimal forecast r̂t+1,t = E (rt+1|Xt). Therefore,
κτ will capture deviations from the standard MSPE loss function. For instance, if L corresponds to the
mean absolute error (MAE) loss, then δ∗ = F−1

η (0.5) = median (η) and r̂t+1 = median (rt+1|Xt).
Finally, if L is the asymmetric lin-lin loss, then δ∗ = F−1

η (τ) and r̂t+1 = Qτ (rt+1|Xt) for τ 6= 0.5.

6 Replication with stock return
In this section, we demonstrate the same empirical analysis with stock return, instead of equity premium,
as the forecasting variable. Generally speaking, the results are quite similar to what we see with equity
premium in the paper.

In Figures 4 and 5, we present time series plots of the differences between the cumulative squared
prediction error for the benchmark forecast and that of each conditional forecast as Figures 1 and 2
shown in the paper.

In general, Figure 4 shows that in terms of cumulative performance, few of the single-predictor models
consistently outperforms the historical average. Some of the panels have positively sloped curves during
some periods of time, but eventually display negatively sloped curves in the end, such as the one based
on E10P. Also, the majority of the single-predictor forecasting models have a higher MSPE than the
benchmark.

Figure 5 shows the same graphical analysis for PLQCj , FQRj , j = 1, 2, 3, 4, FOLS1, FOLS2
8 and CSR

with k = 1, 2, 3. The curves for PLQCj and FQRj do not exhibit substantial falloffs as those observed
Figure 4. It indicates that the PLQCj and FQRj forecasts deliver out-of-sample gains on a considerably
more consistent basis over time. The PLQC and FQR forecasts perform similarly until 1990.12, but FQR
is outperformed by PLQC during the 1991.1-2013.12 period. The results shown in Figure 2 suggest that
most of the predictors become weak after 1990, as we found in the paper with equity premium.

Table 5 reports R2
OS statistics and its significance through the p-values of the Clark and West (2007)

test (CW). Ialso shows the p-values of the Diebold-Mariano (1995) test (DM) and the annual utility gain
∆ (annual%) associated with each forecasting model. The results for the entire 1967.1:2013.12 out-
of-sample period confirm that few single-predictor forecasting models have a positive R2

OS , and their
8Recall that FOLS forecasts are based on the OLS estimation of an equation whose predictors are selected by the

`1-penalized quantile regression method. Since we have considered two sets of quantiles τ = (0.3, 0.5, 0.7) and τ =
(0.3, 0.4, 0.5, 0.6, 07), there will be two such prediction equations and therefore two FOLS forecasts, denoted by FOLSj ,
j = 1, 2.
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Figure 4: Cumulative squared prediction error for the benchmark model minus the cumulative squared prediction
errors for the single-predictor regression forecasting models, 1967.1-2013.12

A positive sloped curve in each panel indicates that the conditional model outperforms the HA, while the opposite holds for a downward sloping curve.
Moreover, if the curve is higher at the end of the period, the conditional model has a lower MSPE than the benchmark over this period. Figure 1 shows that in
terms of cumulative performance, none of the single-predictor models consistently outperforms the benchmark.

Figure 5: Cumulative squared prediction error for the benchmark model minus the cumulative squared prediction
errors for the FQR, FOLS, CSR and PLQC models, 1967.1-2013.12

A positive sloped curve in each panel indicates that the conditional model outperforms the HA, while the opposite holds for a downward sloping curve.
Moreover, if the curve is higher at the end of the period, the conditional model has a lower MSPE than the benchmark over this period. Figure 2 shows that
the PLQC forecast is a top performer, especially after 1990.
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p-values are mostly not statistically significant. The same happens to the CSR forecasts. The only excep-
tions in this long out-of-sample period are the PLQC, FQR and FOLS forecasts, but the PLQC forecasts
outperform the rest generally.

As for the subperiod 1967.1-1990.12, Table 5 shows that some single-predictor models performed
well, as well as CSR forecasts. The performance of PLQC and FQR forecasts are quite similar. FQR s-
lightly outperforms the PLQC, suggesting if predictors are strong, there will be no advantage to use a fore-
casting device that is robust against (partially) weak predictors. However, since the quantile-regression-
based FQR forecasts outperform OLS-based FOLS, we conclude that there is still an advantage to consider
forecasts that are robust against estimation errors.

As noted earlier, most predictors become weaker after 1990. Indeed, all single-predictor models have
non-significant R2

OS values and negative utility gains in the 1991.1-2013.12 subperiod. The same results
for CSR forecasts confirm that this methodology is also affected by the presence of weak predictors.
The PLQC forecasts dominate any other forecasting method in terms of R2

OS and utility gains. The
performance of FQR deteriorates significantly during the 1991.1-2013.12 subperiod.

Finally, we look at the most recent out-of-sample subperiod, 2008.1-2013.12. None of the single-
predictor models and the CSR forecasts perform well during this period of financial instability. In contrast,
the statistic and economic measures of the PLQC forecasts are even better than those in other periods.
More specifically, the R2

OS and utility gain statistics for PLQCj are at least twice as large as those for
other out-of-sample periods. This suggests that the PLQC method works very well even during periods
with multiple episodes of financial turmoil.

Table 6 shows the decomposition of the mean-square-prediction-error (MSPE). Recall that this de-
composition measures the additional MSPE loss of FOLS forecasts relative to the PLQC forecasts. The
first element on the righthand side of equation measures the additional loss of the FOLS forecast resulted
from OLS estimator’s lack of robustness to the estimation errors, while the second element represents the
extra loss caused by the presence of partially weak predictors in the population. For the out-of-sample
period, 1967.1-1990.12, the contribution of partially weak predictors is much smaller compared to that of
estimation errors. This is consistent with the results shown in Figures 1 and 2 and also Table 5. In case of
strong predictors, most of the loss will be explained by OLS estimator’s lack of robustness to estimation
errors, so there is still an advantage to use quantile regression methods to avoid the effect of estimation
errors. The situation changes dramatically when weak predictors become a more severe issue during the
post-1990 out-of-sample period9. As a result, the second element dominates, indicating that most of the
forecast accuracy loss is ascribed to the presence of partially weak predictors.

9During this period, the MSPE of FQR model is larger than that of the FOLS, leading to negative number in Table 6. But
again, this emphasize the major role played by the presence of partially weak predictors.
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Table 5: Out-of-sample Returns Forecasting
OOS: 1967.1 - 2013.12 OOS: 1967.1 - 1990.12 OOS:1991.1 - 2013.12 OOS: 2008.1 - 2013.12

Model R2
OS(%) DM CW ∆(annual%) R2

OS(%) DM CW ∆(annual%) R2
OS(%) DM CW ∆(annual%) R2

OS(%) DM CW ∆(annual%)
Single Predictor Model Forecasts

DP 0.48 0.95 0.04 0.43 1.45 0.14 0.01 1.86 -0.74 1.00 0.37 -1.05 0.12 0.87 0.36 -0.12
DY 0.46 0.97 0.03 0.67 1.85 0.23 0.01 2.67 -1.30 1.00 0.35 -1.39 0.36 0.84 0.30 0.34
EP -1.07 0.99 0.29 0.63 -1.22 0.92 0.50 0.14 -0.88 0.96 0.25 1.13 -2.90 0.91 0.54 3.66
DE -1.59 0.98 0.96 -0.63 -1.74 1.00 1.00 -1.57 -1.41 0.66 0.70 0.35 -2.33 0.84 0.69 0.02

SVAR -0.24 0.51 0.67 -0.02 -0.45 0.44 0.70 -0.04 0.03 0.66 0.43 0.01 0.05 0.55 0.45 0.14
BM -2.72 1.00 0.41 -0.98 -3.03 0.95 0.49 0.01 -2.33 1.00 0.34 -2.00 0.06 0.91 0.35 0.16

NTIS -1.93 0.93 0.68 -0.82 -0.48 0.80 0.23 -0.72 -3.77 0.91 0.92 -0.92 -7.07 0.85 0.91 -4.25
TBL 0.76 0.09 0.05 1.36 1.45 0.08 0.05 2.75 -0.11 0.88 0.96 -0.09 -0.07 0.18 0.77 -0.04
LTY 0.44 0.13 0.12 1.06 0.82 0.12 0.11 2.13 -0.04 0.82 0.74 -0.05 -0.09 0.95 0.73 -0.17
LTR -0.06 0.85 0.17 0.25 0.33 0.65 0.13 1.10 -0.56 0.89 0.46 -0.65 -0.11 0.65 0.41 -1.48
TMS -0.19 0.74 0.34 0.26 0.54 0.53 0.12 0.91 -1.11 0.81 0.83 -0.42 -0.59 0.16 0.68 -0.87
DFY 0.18 0.70 0.18 0.09 0.79 0.14 0.02 1.20 -0.59 0.97 0.75 -1.07 -1.24 0.64 0.79 -2.92
DFR 0.03 0.64 0.37 0.27 -0.01 0.71 0.47 0.06 0.07 0.58 0.38 0.49 0.50 0.57 0.35 2.21
INFL 0.43 0.01 0.06 0.60 0.90 0.02 0.04 1.33 -0.16 0.12 0.60 -0.17 -0.88 0.59 0.86 -1.57
E10P 0.04 0.99 0.03 0.49 1.50 0.52 0.03 2.34 -1.81 1.00 0.22 -1.41 0.94 0.79 0.18 1.14

Complete Subset Regression Forecasts
CSR k=1 0.46 0.73 0.03 0.39 0.91 0.10 0.01 1.04 -0.11 0.97 0.44 -0.29 -0.33 0.90 0.71 -0.54
CSR k=2 0.23 0.95 0.13 0.25 0.76 0.49 0.07 1.02 -0.45 0.99 0.48 -0.56 -0.61 0.86 0.65 -0.68
CSR k=3 -0.29 0.99 0.32 0.02 0.12 0.81 0.26 0.53 -0.80 0.99 0.51 -0.50 -0.88 0.80 0.60 0.25

Forecasts based on LASSO-Quantile Selection
FOLS1 0.86 0.61 0.02 1.77 0.26 0.65 0.14 1.32 1.61 0.52 0.04 2.25 4.57 0.20 0.07 5.96
FOLS2 0.51 0.61 0.03 1.66 -0.22 0.74 0.18 1.17 1.43 0.41 0.05 2.16 3.68 0.22 0.09 4.69
FQR1 1.60 0.04 0.01 2.58 2.04 0.20 0.02 2.67 1.05 0.05 0.08 2.48 3.89 0.02 0.07 7.39
FQR2 1.67 0.05 0.01 2.45 1.91 0.27 0.03 2.66 1.36 0.04 0.07 2.23 4.13 0.03 0.08 5.61
FQR3 2.22 0.16 0.01 2.65 2.94 0.07 0.03 3.89 1.31 0.50 0.11 1.36 4.66 0.20 0.13 5.84
FQR4 2.18 0.23 0.02 2.44 2.99 0.12 0.03 3.88 1.16 0.56 0.12 0.95 4.52 0.26 0.14 4.64

PLQC1 1.63 0.12 0.03 1.57 1.45 0.29 0.10 0.95 1.87 0.14 0.08 2.22 6.17 0.11 0.08 6.11
PLQC2 1.97 0.04 0.02 1.96 2.05 0.13 0.07 1.70 1.85 0.08 0.07 2.23 5.50 0.08 0.08 5.80
PLQC3 2.15 0.17 0.02 2.10 2.65 0.07 0.06 3.51 1.52 0.53 0.11 0.63 5.50 0.30 0.11 3.08
PLQC4 2.49 0.14 0.02 2.54 2.73 0.13 0.05 4.00 2.18 0.37 0.09 1.03 6.31 0.23 0.10 3.74

This table reports R2
OS statistics (in%) and its significance through the p-values of the Clark and West (2007) test (CW). It also shows the p-value of

the Diebold-Mariano (1995) test (DM) and the annual utility gain ∆ (annual%) associated with each forecasting model over four out-of-sample periods.
R2

OS > 0, if the conditional forecast outperforms the benchmark. To test the null hypothesis R2
OS ≤ 0, the p-values for one-sided (upper-tail) Diebold-

Mariano (1995) test (DM) and Clark and West (2007) test (CW) are obtained. The annual utility gain is interpreted as the annual management fee that an
investor would be willing to pay in order to get access to the additional information from the conditional forecast model.

Table 6: Mean Squared Prediction Error (MSPE) Decomposition
MSPEFOLS −MSPEPLQC = (MSPEFOLS −MSPEFQR)+ (MSPEFQR −MSPEPLQC)

OOS % of total % of total
1967.1 - 1990.12 74.42% 25.58%
1991.1 - 2013.12 -91.39% 191.39%

The decomposition measures the additional MSPE loss of FOLS forecasts relative to the PLQC forecasts. The first element (MSPEFOLS−MSPEFQR)
measures the additional loss from OLS estimator’s lack of robustness to estimation errors, while the second element (MSPEFQR − MSPEPLQC )
represents the extra loss caused by the presence of partially weak predictors in the population. Note: the PLQC, FQR and FOLS forecasts correspond to
models noted as PLQC3, FQR3, and FOLS1 respectively in the paper. Results are similar based on PLQC4, FQR4 and FOLS2.
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